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ABSTRACT
Terrorists could acquire nuclear weapons by using weapon-
usable nuclear material that was stolen or otherwise diverted
from legitimate authorities. Multiple well-documented seizures
suggest the existence of a black market that draws on an
unknown stock of weapon-usable nuclear material that is not
under the control of authorities. We estimate the total amount
of uncontrolled material based on publicly reported seizures and
several different statisticalmethods andmodels.We estimate that
90 to 250 kilograms—sufficient for up to ten nuclear weapons—
remain outside the control of legitimate authorities. While this
estimate is subject to large uncertainties and potential bias,
governments may have additional information about nuclear
material seizures that could be used to improve estimates.

Introduction

It is widely accepted that the largest barrier to the acquisition of nuclear weapons
is access to weapon-usable nuclear material (WUNM)—highly enriched uranium
(HEU) and plutonium. Production of thesematerials is difficult for nation states and
beyond the capacity of even the best-equipped terrorist group. A central element in
initiatives to reduce the risk of nuclear terrorism has been an effort to reduce the
production and use of WUMN, to remove WUNM where possible, to increase the
security of remaining stockpiles, and to detect and interceptWUNM in transit or in
black markets.1

Despite these efforts, it is likely that some unknown but substantial quantity of
WUNMremains outside the control of any legitimate authority. As shown inTable 1,
21 seizures involving a total of 19.72 kg of WUNM (19.35 kg of HEU and 0.37 kg of
plutonium) were publicly reported between 1992 and 2015. These seizures resulted
from inspections at international borders, sting operations, and other police actions.
Additional seizures may have occurred that have not been publicly reported. It is
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SCIENCE & GLOBAL SECURITY 125

Table . Documented cases of seizures of weapon-usable nuclear material. The amount is given in
grams.

Date Location Material Amount, g

 Nov  Podolsk, Russia HEU (%) ,
 Jul  Andreeva Guba, Russia HEU (%) ,
 Nov  Murmansk, Russia HEU (%) ,
 May  Vilnius, Lithuania HEU (%) 
March  St. Petersburg, Russia HEU (%) ,
 May  Tengen-Wiechs, Germany Pu .
 Jun  Landshut, Germany HEU (.%) .
 Jul  Munich, Germany Pu .
 Aug  Munich Airport, Germany Pu .
 Dec  Prague, Czech Republic HEU (.%) ,
Jun  Moscow, Russia HEU (%) ,
 Jun  Prague, Czech Republic HEU (.%) .
 Jun  Ceske Budejovice, Czech Rep. HEU (.%) .
 May  Rousse, Bulgaria HEU (.%) 
May  Electrostal Russia HEU (%) ,
Dec  Karlsruhe, Germany Pu .
 Jul  Paris, France HEU (.%) .
 Jun  Sadahlo, Georgia HEU (%) 
 Feb  Tbilisi, Georgia HEU (%) .
 Oct  Chisinau, Moldova HEU (.%) 
 Nov  Tbilisi, Georgia HEU (%) 
Total ,

reasonable to assume that seized materials are part of a larger stock of WUMN that
exists outside any government and regulatory control, and that there remains some
quantity of WUNM that is potentially available to buyers on black markets. Reli-
able estimates of this quantity of material would be useful for evaluating the risks
of nuclear terrorism and the level of effort that should be devoted to reducing these
risks.

Although individual states maintain nuclear material accounting systems, uncer-
tainties and errors inmeasurement and accounting limit their use to determine how
much—if any—materialmay have been lost or stolen. For example, theUnited States
estimates that it produced or otherwise acquired a total of 111,700 kg of plutonium,
but current inventories and known removals account for only 109,300 kg, leaving
about 2,400 kg unaccounted for.2 There is no evidence that any of this material was
stolen; most or all the 2,400 kg shortfall is probably the result of overestimates of
plutonium production and/or underestimates of plutonium disposed with wastes
or remaining in processing facilities. The Russian government does not provide a
public accounting of its plutonium balance, but it is generally believed that account-
ing uncertainties are even larger than those in the United States. Thus, we cannot
rely on official material accounting systems to provide a plausible upper bound on
the amount of WUNM that may be outside of state control.3

In this article, we use information about known seizures to estimate the total
amount of WUNM that remains outside government control. Our approach is sta-
tistical.4 We begin with the simple assumption that seizures of WUMN are random
events: in any black market transaction or smuggling operation there is some prob-
ability that the material will be seized by authorities, with the outcome determined
by random factors. With additional—andmore questionable—assumptions, we can
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126 V. STANEV AND S. FETTER

build simple models to describe the seizure or recovery process. We consider two
such models: a binomial model and a capture-recapture model. These models rep-
resent complementary approaches: the former assumes a constant flow of material
from which some unknown fraction is recovered; the second assumes a fixed stock
of material from which there is an occasional recovery. We also consider the poten-
tial bias of the mass distribution of intercepted items and introduce a corrected
distribution that includes the possibility of unobserved items of larger mass.

We acknowledge that our estimates have very large uncertainties and that they
may systematically under-estimate or over-estimate the quantity of uncontrolled
WUNM. The estimates obtained here should be treated as a preliminary attempt
to address this important question.

Publicly known seizures of WUNM

There are three well-known databases on incidents involving WUNM. The Inter-
national Atomic Energy Agency (IAEA) supports the Incident and Trafficking
Database, which is protected by confidentiality agreements between IAEA and
the member states and is not publicly accessible (although the agency publishes
annual summary reports).5 A second database, maintained by the Center for Non-
proliferation Studies, is open-source but includes data only for recent years and
the quality and accuracy of the information varies considerably.6 Here we use the
Database on Nuclear Smuggling, Theft and Orphan Radiation Sources (DSTO),
maintained by University of Salzburg. Although not available to the public, several
detailed reports on the information contained in DSTO have been published.7

Unless stated otherwise, the information used here comes from these two reports.
Table 1 summarizes the well-documented seizures of WUNM.

Estimates based on the recovery probability distribution

Webeginwith a simplemethod for estimating the quantity of uncontrolledWUNM.
We aggregate all seized WUNM, neglecting differences in chemical and isotopic
composition. The total quantity of WUMN seized between 1992 and 2015 is about
19.72 kilograms, which for simplicity we round to 20 kg. The fraction of WUMN
that has been recovered is given by

t = r
r + x

(1)

where r = 20 kg and x is the amount of WUNM that remains outside control. We
assume that the seizure of WUNM is an intrinsically random process with a fixed
probability. The probability that x is less than a given amount X is given by

P(x < X |r) =
∫ 1

r
X+r

f (t )dt = 1 −CDFf
(

r
X + r

)
(2)

where f (t ) is the probability distribution and CDFf is the cumulative probability
distribution of the fraction of material that has been recovered. We represent f (t )
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SCIENCE & GLOBAL SECURITY 127

with the Beta distribution, which is a family of continuous distributions used exten-
sively for Bayesian estimations:

f (t ) = �(α + β)

�(α)�(β)
tα−1(1 − t )β−1, (3)

where α and β are shape parameters. Using the values α = β = 1 produces uni-
form distribution f (t ) = 1, which is equivalent to complete ignorance about the
fraction of material that has been seized. In that case, Equation (2) reduces to

P(x < X |r) = 1 − r
X + r

= X
X + r

. (4)

The uniform distribution gives a 50% probability that less than 20 kg remains
unrecovered, 75% probability of less than 60 kg; 90% probability of less than 120 kg;
and 96% probability of less than 200 kg. This is an unbiased estimate because it does
not require any assumptions apart from the randomness of the recovery process.
This provides an important baseline for comparison with other estimationmethods
that rely on additional assumptions.8

Butwe need not assume complete ignorance about the recovery probability. Black
markets exist in a wide range of contrabandmaterials, including illegal drugs, stolen
and counterfeit goods, currency, weapons, humans, and wildlife. In some cases, it is
possible to estimate the total size of the market and therefore the recovery prob-
ability (the percent of contraband that is seized). Studies of these black markets
generally indicate that seizures are a small fraction of the total amount of contra-
band in circulation. In the case of illegal drugs, consumption is estimated with sur-
veys, drug treatment, and arrest data. If we divide reported seizures by the sum of
seizures and estimated consumption in the United States, we find that the average
recovery fraction during the period 2000–2010 was 6–16% for heroin, 8–21% for
methamphetamine, 21–35% for marijuana, and 24–43% for cocaine.9 In the case
of elephant ivory, the size of the market generated by illegal poaching can be esti-
mated by modeling and tracking elephant populations. Dividing reported seizures
of African elephant ivory by estimates of the total amount of ivory derived from ille-
gal poaching during the period 2010–2012 yields a recovery probability of 4–19%.10

Based on reported seizures and estimates of the number of small arms purchased
with the intention of trafficking them, one study estimates that U.S. and Mexico
authorities seized 9–35% of total arms bought in 2010–2012 with the intention of
trafficking them.11 Estimated recovery rates for stolen fine art range from 6% to
20%.12

There are important differences between the black market in WUNM and other
black markets. The largest black market, illegal drugs, has well-developed and well-
financed networks of producers and distributors with decades of experience in
smuggling, but there also exist dedicated intelligence and police efforts to counter
the drug trade. The black market in ivory and other wildlife is much smaller and
smugglers are less organized and professional, but police and customs officials in the
supplier countries are also less effective. Gun smuggling is strongly linked to other
criminal activities, and the same groups smuggling guns also smuggle illegal drugs
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128 V. STANEV AND S. FETTER

Figure . Notional probability distributions for the WUMN recovery probability, based on recovery
probabilities estimated for other black markets.

and other contraband. Despite these differences, Foss concludes that “characteristics
associated with smuggling and trafficking of nuclear material are no different than
the characteristics associated with smuggling and trafficking other illicit commodi-
ties.”13 Foss notes in particular similarities between the black markets for stolen art
and nuclearmaterial: both involve small, portable objects that are typically subject to
strong protections from theft, and both have nichemarkets in which legal purchases
occur only in limited and well-defined circumstances. In both markets, sellers have
a difficult time finding buyers, and hoaxes and scams are common. Thus, we judge
that it is not unreasonable to assume that the recovery probability for WUMN is
likely to be in the same range as that for other black markets, for which recovery
probability estimates range from a low of 6–10% to a high of 35–45%.

We use Equation (3) to create a set of distributions for theWUMNrecovery prob-
ability with a lower 10% confidence level in the range of 6–10% and an upper 90%
confidence level in the range of 35–45%. Figure 1 shows four representative distri-
butions that satisfy these conditions with shape parameters (α, β) of (1.6, 5.3), (2.2,
9.2), (2.6, 7.5), and (3.6, 13). These are reasonable prior probability distributions
based on estimated recovery probabilities in other black markets, but they allow for
the possibility that the recovery probability forWUMNcould be significantly higher
or lower.

Integrating these functions, we obtain estimates for the probability P(x〈X |r).
As shown in Figure 2, there is a 50% probability that the amount of uncontrolled
WUMN is less than 65–95 kg; a 75% probability of less than 105–165 kg; and a 90%
probability that less than 180–320 kg remains outside control. These estimates are
significantly higher than those obtained using the uniform probability distribution
f (t ) = 1 because the prior probability distributions are skewed to left.

Binomial approximation

In this section we use the variation in the number of seizures with time to esti-
mate the recovery probability. Although this method relies on the questionable
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SCIENCE & GLOBAL SECURITY 129

Figure . Plot of the probability P(x < X ∨ r) that the amount ofWUNM that has not been recovered
is below X .

assumption that the recovery probability is constant with time, it provides a natural
extension of the estimates obtained in the previous section.

A severe problem in developing a statistical model for the recovery process is the
very small number of seizures of WUNM. To compensate, we expand the dataset
by considering seizures of all radioactive materials and assume that the recovery
probability for WUNM is roughly equal to that for all radioactive materials. We
consider incidents involving radioactive materials where there was clear criminal
intent, excluding incidents unlikely to be connected to potential blackmarket trans-
actions. We restrict our analysis to transactions in the Black Sea region.14 Although
this choice is driven by the availability of data, the countries of this region account
for more than half of the WUNM seizures and more than 85% of the total amount
of WUMN seized.

Figure 3 shows the number of seizures of radioactive materials per year in the
Black Sea region from 1991 to 2012.15 There is a significant variation in the number

Figure . Annual number of seizures of radioactive materials in the Black Sea region, –.
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130 V. STANEV AND S. FETTER

of seizures per year. Some of this variability may be due to changes in political,
economic, and security conditions. For example, the collapse of the Soviet Union
and the accompanying widespread political and economic crisis might explain
the sharp rise in the number of seizures from 1991 to 1994, and the subsequent
improvements in the economic situation in the countries of the former Soviet
Union and Eastern Europe might help explain the gradual decrease in the number
of seizures in from 2000 to 2010. Although political and economic events are likely
to be important determinants of nuclear smuggling attempts and the recovery
probability, we ignore these factors and assume a constant rate of smuggling and a
constant recovery probability, to create a simple model for the relationship between
the observed variability of seizures and the recovery probability. In other words,
we assume that every year there is some fixed number of attempts to smuggle or
sell radioactive material and that there is a constant probability q that each such
attempt will be detected and the material will be seized.

There is, of course, no reason to expect the same number of smuggling attempts
each year. On the contrary, we expect this number to vary in response to changes in
economic and security conditions, aswell as other factors.We can, however,mitigate
the effects of this extrinsic variability by combining several non-consecutive years
together, to average away the deterministic time dependence of Ntot .

Before we do this, however, let us first attempt to directly fit the data shown in
Figure 3. We use a standard binomial model, with each year providing an indepen-
dent sample of a process with Ntot trials, each of which may result in a recovery
with probability q, and leads to average number of seizures per year n = qNtot .16

From the data we can estimate n, but not directly q orNtot . However, we can use the
observed mean and variance of the annual number of seizures to estimate simulta-
neously both parameters of the model. Because the variance of the binomial distri-
bution is given by σ 2 = Ntotq (1 − q) = n(1 − q),

q = 1 − σ 2

n
or, equivalently,

σ (Ntot ) =
√
n
(
1 − n

Ntot

)
.

For the data shown in Figure 3, the mean and variance in the sample are 6.0 and
8.1, respectively, which is not compatible with the binomial model (the variance is
too large, resulting in a negative value for q). Note, however, that the number of
seizures in 1994 (15) is more than four standard deviations above the mean for all
years except 1994, and thus is clearly an outlier. If we omit this year, then n = 5.6
and σ 2 = 4.3, which leads to q = 0.24, suggesting that about one-quarter of all
smuggled material was seized.

Although removing one year from the datamay be justified by the need to remove
an outlier, it also has the unfortunate consequence of ignoring the year with highest
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SCIENCE & GLOBAL SECURITY 131

Figure . The dependence of the variance on Ntot , directly as given by the binomial model (dashed-
dotted curve), and corrected for overdispersion of the data with φ (solid curve). The intersection of
the σdata (dashed line) with corrected σmodel gives an estimate of Ntot of around  (the recovery
probability of about %). Note the change of scales caused by combining years in groups of two:
n= .

number of incidents. This artificially reduces the variance, which might result in a
significant underestimation ofNtot and, accordingly, an overestimation of q. Because
overdispersion (i.e., variance significantly larger than what a simple binomial model
would predict) is a common occurrence in real data, various approaches for tackling
it have been suggested.17 Here we will follow a simple procedure. First, we combine
all years in random groups of two to reduce the effects of the historical trends in the
data.18 We then estimate the standard deviation of the binned data and assume it has
the form σdata = φσmodel , where φ is the variance inflation parameter. This is one of
the simplest ways to introduce overdispersion in themodel, and has been extensively
used in the literature.19 It has the advantage that φ can be estimated directly, without
assuming prior knowledge of q or Ntot . Using this parameter, we can correct the
theoretical curve σ (Ntot ), and find its intersection with the standard deviation of
the data. We estimate φ using the Pearson’s chi-square statistic:

φ =
(∑ (ni − nmean)

2

nmeand f

) 1
2

where ni is the data for ith two-year bin, and d f = Nbins − 1 is the number of degrees
of freedom (Nbins is the total number of two-year intervals).

In Figure 4 we show the corrected curve, which now intersects with the data and
provides an estimate of Ntot slightly below 100. Because the average for the binned
data is n = 12, this suggests recovery probability of about 15%. As expected, this
is significantly less than the previous estimate of 24%, which ignored data from
1994.

To get a rough idea of the accuracy of this estimate (at least within the confines of
this highly simplified model), we run simulations by repeatedly drawing binomially
distributed samples for fixed n and Ntot , and calculate their mean and variance. We

D
ow

nl
oa

de
d 

by
 [

72
.8

3.
22

2.
14

1]
 a

t 1
8:

12
 2

1 
N

ov
em

be
r 

20
17

 



132 V. STANEV AND S. FETTER

Figure . Plot of simulated binomial processes, overlaid on the observed and theoretical standard
deviations (the latter is corrected for overdispersion). The white points show the boundaries of the
first and fourth quartiles for each simulation, and the white lines were obtained from these points
with third-degree spline fitting. The distribution of simulated points is noticeably asymmetric with
respect to the theoretical curve.

multiply the standard deviation by the calculated variance inflation factor and plot
the lines which contain 50% of the simulations. This procedure provides us with a
measure of the confidence interval for the estimate ofNtot . The results of the simula-
tion are shown in Figure 5. We can say with 75% confidence thatNtot is greater than
56, and thus the recovery probability is less than 12/56 � 20%. Unfortunately, this
method does not provide an upper confidence limit for Ntot (or a lower confidence
limit for the recovery probability).

Note that by including the variance inflation parameter we are correcting for
some of the most egregious simplifications of the model (the assumptions of con-
stant q and Ntot). Although many other treatments of overdispersion are possible,
these estimates could be improved if a subset of the data was found where more
underlying assumptions are satisfied

This analysis is based on data for seizures of radioactive materials. Most seizures
result from the activities of police or border agents, who do not have knowledge of
the physical or chemical characteristics of the materials involved, which suggests
that the recovery probability for WUMN may be like that for all radioactive mate-
rials.20 If the recovery probability for WUNM is equal to the estimates given above
for radioactive materials, there would be 75% confidence that the amount of uncon-
trolled WUMN is more than 80 kg. On the other hand, knowledgeable smugglers
should consider WUNMmuch more valuable than other radioactive materials and
should take greater care to prevent detection by police and border agents. This sug-
gests that the seizure probability forWUNMcould be significantly lower than for all
radioactive materials and that the amount of uncontrolled material is significantly
greater than 80 kg. We can compare this with the estimate obtained in the previous
section (75% probability of less than 105–165 kg).
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SCIENCE & GLOBAL SECURITY 133

What can we learn from capture-recapturemethods?

The methods described in the preceding sections are based on the perspective of
a constant flow of uncontrolled WUNM, from which some unknown fraction is
recovered year after year. A complementary approach is to consider a fixed com-
bined stock of such material, from which small amounts are recovered. This bears
some resemblance to the problem in biostatistics of estimating an unknown pop-
ulation size from a limited sample, which is commonly addressed using capture-
recapture methods. An initial random sample of animals is captured, tagged, and
released, and then another random sample of animals is captured some time later.
The total size of the population can be estimated by dividing the tagged in the first
sample by the fraction of tagged animals in the second sample.

Capture-recapture methods cannot be directly applied to the problem of uncon-
trolled WUNM, but we can devise a surrogate measure for recapture events. If
WUMN intercepted at different times and locations originated from the same
source, we can treat the cases connected to a single source as recapture events from
the sample of all cases involving WUNM, which in turn is drawn from the entire
WUNM population.21 The capture-recapture model developed here assumes that
all smuggledWUNMcomes from a relatively small number of well-defined sources;
that each such source has contributed to at least two separate smuggling instances so
there could be “capture” and “recapture” events (i.e., multiple seizures from the same
source), that the probability of recapture is the same for all sources, and that captured
items coming from the same source can be reliably identified and connected (e.g., by
using nuclear or other forensic analysis). These assumptions are highly questionable,
but this method provides a fundamentally different approach than the binominal
model.

We have only a few possible instances of recapture, so the sparse events for-
mulation of the problem is used.22 It relies only on the number of cases without
recapture (denoted by f1) and number of single recaptures (known as f2). In this
case we have:

Ntot = S +
(
f 21 −∑

i Z
2
i
)

2 f2
,

where S is the total number of captures and Zi is the number of cases captured
only in a single year i (we consider each year as a separate “trap” and the sum is
over all years). From these definitions it follows that S = f1 + f2 and

∑
Zi = f1

(where the sum is again over all years). If we take 21 seizures of WUMN and
with the assumption of one recapture event (S = 21 and f2 = 1) we arrive at
Ntot ≈ 105, corresponding to a recovery probability of about 20%. Note that if there
were no recapture events ( f2 = 0) the general formula gives infinity for Ntot , as
it should: the observed probability for recapture is zero, implying infinitely large
population.

We can obtain the standard deviation of this estimate. The general formula for
the variance of Ntot is:
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134 V. STANEV AND S. FETTER

σ 2(Ntot ) = (Ntot − S) + (Ntot − S)2
(

1
f2 + 1

+ 4
Ntot

)

+
(∑

i ( f1 − Zi)
2Zi − [

∑
i( f1 − Zi)Zi]2/Ntot

( f2 + 1)2

)
.

With this we get σ (Ntot ) ≈ 70, which is very large. If we assume that the interval
Ntot ± σ (Ntot ) contains roughly 68% of the possible Ntot calculated from similar
observations, we can construct a confidence interval for the number of the uncon-
trolled WUNM items: with 75% confidence there are fewer than 130 items not
captured, or less than 120 kg of uncontrolled WUMN.23 This interval is similar
to the one obtained in the section “Estimates Based on the Recovery Probability
Distribution” for comparable recovery probabilities. Note that if either of the
key assumptions of the capture-recapture model is incorrect (that there is always
another member of the same group and that we can reliably link them), it would
overestimate the amount of missing material.

Good-Turing formula

In the discussion above we estimated the total number of uncontrolled WUMN
items based on the number of known seizures, and converted the derived total num-
ber of items to a total mass of uncontrolled material using the average mass per
seizure. This assumes that the mass distribution of all uncontrolled material is the
same as the mass distribution of the seizedmaterial. This assumptionmerits further
examination because it can significantly bias the resulting estimates.

To demonstrate the possible pitfalls of using the observed distribution, we divide
the mass of intercepted materials into 1-kilogram bins, as shown in Figure 6. The
distribution seems reasonably smooth, but this is a consequence of having relatively
large bins; splitting the data in smaller bins leads to a much more irregular and
jagged distribution (shown in the inset of Figure 6). Thus, collecting the data in

Figure . The distribution of intercepted weapon-usable material by mass using -kilogram bins. In
the inset the distribution using .-kilogram bins is shown.
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SCIENCE & GLOBAL SECURITY 135

Figure . Proposed probability density function of intercepted weapon-usable material by mass. The
diamonds represent the observed relative frequencies. The dashed line is a simple exponential fit
(γ0 = 1.25), and the solid line is modified exponent with γ = 0.47 adjusted for the possibility of
heavier shipments calculated by Good-Turing formula.

1-kilogram bins is a simple but effective, and, for the following discussion, nec-
essary smoothing procedure. The larger problem is that by using the distribution
of observed cases to estimate the mass distribution of the entire unobserved pool
of uncontrolled material we are implicitly assuming that the probability than any
single item in the unobserved pool has a mass of more than 5 kilograms is negli-
gible. This is a result of the fact that we have not observed seizures of more than 5
kilograms of WUNM.

One solution is to adjust the observed distribution to account for the possibility
of larger but unobserved smuggling events. This can be done by fitting the observed
distribution with a curve and extrapolating to larger masses. (Criticality concerns
limits the mass of a single item, but we ignore this here.) A simple exponential,
P (m) = γ0e−γ0(m/m0) , withm0 as the size of the bin, in our case, 1 kilogram, and a
single adjustable parameter γ0 provides a reasonable fit to the observed points (see
Figure 7). The fitting gives γ0 = 1.25, which leads to a small probability of items
greater than 5 kg: P(m > 5 kg) ≈ 0.002.

Another approach is to use amethod developed by Alan Turing and Irving Good,
which provides a way to modify the simple estimate of population frequency based
on observed sample frequencies to include the possibility of unobserved events.24

Turing and Good suggested replacing the naive estimate of population probabil-
ity for a particular item, given by Pn = n/N, where n is the number of times the
item has been observed out of the total sample size N, by a modified probability
P∗
n = n∗

n /N. There are many ways to construct this corrected count n∗
n, but there

are two general properties it must have to be useful: n∗
0 > 0 (which accounts for the

unobserved items) and n∗
n < n (so that the total probability can be properly nor-

malized). Turing proposed a simple way to estimate the frequency of unobserved
items with the formula n∗

0 = ν1
N , where ν1 is the number of species of items that

have been observed only once. This is intuitively appealing because the frequency of
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136 V. STANEV AND S. FETTER

Table . The recovery probability and corresponding amounts of uncontrolledWUMN for the various
methods discussed, for confidence levels of %, %, and %. The actual quantities represent the
upper bounds estimated from the utilized methods for each confidence level.

Recovery Probability (%) Uncontrolled WUMN (kg)

% CL % CL % CL % CL % CL % CL

Probability distribution – – – – – –
Binomial —  — —  —
Corrected binomial —     —
Capture-recapture   — —  
Summary ∼ (–) ∼ (–)
Good-Turing ∼ (–)

items we have seen only once should give us a good idea about the number of things
we have not seen at all. From this estimate we obtain P(m > 5kg) ≈ 0.095, which
is more than an order of magnitude greater than that given by a simple exponen-
tial fit. Guided by this result, we modify the parameter of the exponential fit, where
the value of γ is adjusted to incorporate a estimate for the probability P(m > 5kg).
Using P(m > 5kg) from the Good-Turing formula, we obtain γ = 0.47 as our best
estimate for the correction factor. As shown in Figure 7, this P(m) has amuch fatter
tail. Note that the corrected distribution function is not a good fit for the observed
probabilities, which is to be expected because we are accounting for unobserved
events rather than simply fitting the observed data.

One objection to the use of the Good-Turing method in this context is that it
is typically used to deal with categorical data, rather than continuous variables like
mass. Applying it to the WUNM dataset requires discretizing the mass of the items
by binning it, as we have done above. The choice of bin size is arbitrary and the
results may depend on that arbitrary choice. In this case, however, the choice of bin
size was constrained by the requirement to obtain a smooth distribution. In the bin-
ning procedure we have used above, these two typically separate steps of themethod
are combined and are mutually constraining one another. Indeed, even in the case
of bona fide categorical variables, the necessary smoothing redistributes the original
observations, thus effectivelymaking the definition of a category somewhat vague.25

The average mass per seizure in the 21 observed seizures was 0.95 kg. The
corrected exponential distribution leads to a much higher expectation value per
smuggling event (w′ = 2.13 kg). In other words, the absence of (rare) heavier
shipments in observed seizures could significantly bias our estimates of the weight
of the missing material, by a factor of about 2.13/0.95 = 2.24. Thus, total amount
of uncontrolled material could be more than twice as large as indicated above.

Conclusion

Weapon-usable nuclear material outside the control of authorities can be used for
nuclear terrorism or development of clandestine nuclear-weapons program. We
have not found in the open literature an attempt to estimate the total quantity of
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SCIENCE & GLOBAL SECURITY 137

uncontrolledWUNM.We provide estimates using several different statistical meth-
ods, based on publicly known seizures of WUMN (total of 20 kg in 21 separate
seizures) and the assumption that the seizure of WUNM is a random process. The
results are summarized in Table 2.

The probability distribution, binomial, corrected binomial, and capture-
recapture methods give estimates ranging from 40 to 110 kg for the total amount
of uncontrolled WUMN, with a best estimate of about 80 kg; applying the Good-
Turing correction would roughly double the total mass, to 90 to 250 kg, with a
best estimate of 180 kg. Note that 25 kilograms of HEU is considered a “significant
quantity” by the International Atomic Energy Agency—enough for a first nuclear
weapon. Thus, enough HEU to build up to ten nuclear weapons may exist outside
the control of authorities. Although these methods have serious shortcomings and
are based on highly questionable assumptions, they provide a starting point for a
further discussion.

Appendix A

The data presented in Table 1 summarize well-documented cases involving seizure
ofWUNMmaterials. There aremany other incidents involvingWUNM reported in
open sources, but not definitively confirmed and which we have not included in the
analysis. There is one instance, however, which is of special interest: in 1998, Russian
security services reported that employees of a nuclear facility in Chelyabinsk were
caught attempting to divert 18.5 kg of HEU (the enrichment level was not specified).
Adding this quantity to the cases in Table 1 would almost double the total amount
of seized WUNM and would significantly change the estimates of the amount of
uncontrolled WUNM summarized in Table 2. In this Appendix we repeat the rele-
vant calculations with this case included.

The estimates of recovery probability from the section “Estimates Based on The
Recovery Probability Distribution” remain unchanged, but P(x〈X |r) is modified by
the new total. In Figure A1 (an analogue of Figure 2) we show the new probability

Figure A. Plot of the probability P(x〈X |r) that the amount of WUNM that has not been recovered is
below X , with the additional . kg of HEU included in the total amount.
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138 V. STANEV AND S. FETTER

Table A. The recovery probability and corresponding amounts of uncontrolled WUMN for the vari-
ous methods discussed, for confidence levels of %, %, and %.

Recovery Probability (%) Uncontrolled WUMN (kg)

% CL % CL % CL % CL % CL % CL

Probability distribution – – – – – –
Binomial —  — —  —
Corrected binomial —     —
Capture-recapture   — —  
Summary ∼ (–) ∼ (–)
Good-Turing ∼ (–)

P(x〈X |r), with the same recovery probability distributions as in Figure 1. As could
have been anticipated, the likely amount of unrecoveredWUNM has increased sig-
nificantly (see Table A1).

The uncontrolledWUNMamount obtained using the binomial method (see sec-
tion “Binomial Approximation”) are also based on first finding reasonable estimates
for the recovery probability, which are weakly dependent on adding a single new
instance. In fact, the mean and the variance of the data split by years increase with
less than a percentage point, from 6 and 8.1 to 6.04 and 8.14 respectively. In view of
this, we do not repeat all the steps in Section “Binomial Approximation,” but directly
use the recovery probability and its confidence levels obtained there. With these we
get for our best estimate 220 kg of uncontrolled WUNM, with 75% confidence it is
above 150 kg.

The recovery probability estimated by the capture-recapturemethod described in
the section on capture-recapture methods is also relatively insensitive to the addi-
tion of a new case for 1998. TheNtot is now around 115, corresponding to a recovery
probability of about 19% (compared to 20% in section on capture-recapture meth-
ods). This leads to 75% confidence that there are fewer than 130 items not captured,
or less than 220 kg of uncontrolled WUMN.

The large amount of WUNM from the Chelyabinsk incident (more than triple
that of any other single item in Table 1) underlines the need for correcting the mass
estimates by considering the possibility for large but so far unobserved cases. We
repeat the analysis from the section “Good-Turing Formula” with this case added.
Both simple exponential fit and exponential fit corrected for unobserved masses are
shown in Figure A2. The fitting yields γ0 = 1.16, which leads to P(m > 5kg) ≈
0.0022, while the Good-Turing gives P(m > 5kg) ≈ 0.136 (the unobserved bins
should exclude the 18–19 kg bin, but this is a rather small effect, sowe neglect it). The
corrected parameter is γ0 = 0.40. The observed average mass per item is 38.5/22
= 1.75 kg, while the exponential fit now gives 2.5 kg. Thus, the correction factor is
2.5/1.75 = 1.43, which is smaller than in the main text (2.24).

To summarize, including the 1998 incident involving 18.5 kg of HEU does not
significantly change the estimates of the recovery probability, but it significantly
increases estimates of the amount of uncontrolled WUNM. Estimates for the total
amount of uncontrolledWUMN range from 70 to 300 kg, with a central estimate of
about 160 kg; applying the Good-Turing correction further increases those to 100
to 430 kg, with a central estimate of 230 kg (Table A1).
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SCIENCE & GLOBAL SECURITY 139

Figure A. Proposed probability density function of intercepted weapon-usable material by mass.
The diamonds are the observed relative frequencies, which include the  incident involving . kg
WUNM. The dashed line is a simple exponential fit ( γ0 = 1.16), and the solid line is modified expo-
nential function (γ = 0.40), corrected for the possibility of heavier shipments calculated by Good-
Turing formula.
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