Skip to main content

Near-term transition and longer-term physical climate risks of greenhouse gas emissions pathways

Back to All Publications

Abstract: Policy, business, finance and civil society stakeholders are increasingly looking to compare future emissions pathways across both their associated physical climate risks stemming from increasing temperatures and their transition climate risks stemming from the shift to a low-carbon economy. Here, we present an integrated framework to explore near-term (to 2030) transition risks and longer-term (to 2050) physical risks, globally and in specific regions, for a range of plausible greenhouse gas emissions and associated temperature pathways, spanning 1.5–4 °C levels of long-term warming. By 2050, physical risks deriving from major heatwaves, agricultural drought, heat stress and crop duration reductions depend greatly on the temperature pathway. By 2030, transition risks most sensitive to temperature pathways stem from economy-wide mitigation costs, carbon price increases, fossil fuel demand reductions and coal plant capacity reductions. Considering several pathways with a 2 °C target demonstrates that transition risks also depend on technological, policy and socio-economic factors.


View All Publications

School Authors: Allen Fawcett, Gokul Iyer, Alicia Zhao

Other Authors: John Bistline, Aaron Bergman, Geoffrey Blanford, Maxwell Brown, Dallas Burtraw, Maya Domeshek, Anne Hamilton, Jesse Jenkins, Ben King, Hannah Kolus, Amanda Levin, Qian Luo, Kevin Rennert, Molly Robertson, Nicholas Roy, Ethan Russell, Daniel Shawhan, Daniel Steinberg, Anna van Brummen, Grace Van Horn, Aranya Venkatesh, John Weyant, Ryan Wiser